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Abstract

A modified GaAs MESFET-model has been
developed to improve accuracy over a large bias
range, particularly within the linear region. The
enhancements consist of a modified Statz equation
for the gate charge to improve the modeling of the
gate drain capacitance, and an equation for the bias
dependent drain source resistance for exact
modeling of thedispersive output conductance.

I ntroduction

For the design of GaAs integrated circuits, a simple
and precise simulation model is required. Analytical
models [1-8] have been reported and are frequently
used in common simulators. Most of these
topologies use a constant, bias independent drain
source resistance [1,2] to model the dispersion of
the output conductance. Another approach uses an
additional feedback network to distinguish between
DC and AC behaviour [3,4], thereby rapidly
increasing computation time and causing
convergence problems. Additionally, measurements
indicate that the output conductance is strongly
dependent on the drain source voltage. In this
approach simple equations for a bias dependent
drain source resistance are proposed to model the
output conductance over a large bias range with
high accuracy. Furthermore the Statz gate charge
formula, used in [2,3,4], is improved to better
predict the gate drain capacitance Cyy, While the
originally accurately described gate source
capacitance Cg remains almost unchanged. These
refinements have been added to a TOM-2 model

[4]. The simulations with these changes show much
better agreement with measurements especialy in
the linear region. Thus, the new model is idedly
suited for simulations of switches and mixers.

Gate Charge

The Statz equation for the gate charge is widely
used in large signal models [2,3,4]. The simplicity
and the strict convergence criteria for charges and
capacitances make it attractive for simulators.
Comparisons to measurements of ion implanted
GaAs-FETs show that the bias dependence of Cys is
modelled correctly. But simulated values of Cy
deviate significantly from the measurements. In
particular the Statz equations do not include the
bias dependence of Cy 0n Vgs > knee voltage. We
propose a modified gate charge equation that
improves the characteristic of Cyy considerably,
while leaving Cg almost unchanged. The modified
charge equationis:
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The second term of Eq. (1) is mainly responsible
for Cy and differs from the original Statz equation.
The contribution of this term to Cg is amost
negligible. The derivatives of Q with respect to the
voltages Vg and Vg result in the capacitances Cgys
and Cgyq, respectively:

0-7803-4471-5/98/$10.00 (c) 1998 IEEE



0 0 0 0
u v v o O O O
C - Vs -V, C Vs -V, V
oY . Telw  BCwf, Yo lw § o
a0y Voew O \/v v Pag2 @ . mfo O 2l O V3, +V3
R/ Vg B ( effy T) % (VgS ng) + E E g gd) + E
0 O O O
g v v o 0 0 0
c % ety ~ VT % Vs = Vgd 8. Cgdo Vs~ Vaa g8 V
C’gs gso D+ 1 - ED+ gs 9 E-'- % gs 9 g \/VZ B V2
L Ve, = Vr| +02 2, Bt eff *VB
S 8 O O WO Il W

Vs gate source voltage

Cys0: gate source capacitance for V =0V
Vg: built in junction potential

a: drain current saturation parameter
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Equations (1,2,3) fulfil the demand of charge
conservation and maintain the symmetry to V4. For
these monotone equations no additional parameters
are needed in comparison to the Statz equations. An
error function similar to the least square error was
defined in Eq. (4) to compare the deviations
between the simulation using either the initial Statz
capacitance eguations or the improved capacitance
formulas and the measurements :
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Error values over bias range
Ecgs Ecyd Tab.1
Statz 0.004 |0.15
thiswork |0.004 |0.003

N is the number of bias points (here N=24). The
values of the error function (Tab. 1) indicate that
Cya Can be modelled more accurately with the new
equations, while the accuracy of Cg remains almost

Vg4 gate drain voltage

Cgdo: NOminal gate drain capacitance
V+: threshold voltage
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Vet 1:2: new @S 1N EQ. (128, 12b; 15) of [2]

the same. In Fig. 4 the improved characteristic of
Cya IS compared to both the Cyy obtained from the
original Statz equation and from measurements.

Dispersive Drain Source Conductance

In the saturation region the DC output conductance
is much smaller than the RF output conductance. A
bias dependent drain source resistance Rgys (DC
decoupled by a large capacitance Cgis as shown in
Fig. 1) can be used to correctly model the output
conductance at RF while having no effect at DC. In
the linear region the DC output conductance
increases and requires less compensation. Therefore
Ruis increases. Ryisis modelled as follows:
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Eq. (5) fulfils the demand of symmetry to V4 and
causes no convergence problems. The required Ryis
for different GaAs-FETs (enhancement/depletion)
can be fitted with only two extra parameters V gis
and Rgip. As shown in Fig. 3 the extracted values
from measurements agree well withEg. (5).

Model Verification

In order to verify the proposed model
improvements, transistors on a standard
enhancement/depletion foundry process with 0.6
pm gate length and 6 - 50 pum gate width have been
measured. Large signal model parameters are
extracted from small signal on wafer S-parameters
and DC measurements. The equivalent large signal
model used is shown in Fig. 1. Our mode
modifications were added to an existing TOM-2
model in aHP Libra simulator. The new model was
verified through harmonics and intermodulation
measurements for enhancement and depletion
FETs. With the modified model the transistor
behaviour can be modelled over the entire bias
range (except breakdown) with high accuracy.
Results are presented for an enhancement type. A
typical agreement of measured and simulated small
signal behaviour is shown in Fig. 2. In particular S;2
and S,, are improved compared to the old model.
Finaly Fig. 5 and Fig. 6 compare the third order
intermodulation and the harmonics at 5.2 GHz.
Simulations and measurements show good
agreement.
Conclusions

The linear and nonlinear high frequency
performance of an existing MESFET model has
been improved. A bias dependent drain source
resistance is proposed to accurately model the
output conductance. Furthermore the Statz equation
for the gate charge description is modified to
improve the characteristic of the gate drain
capacitance. These refinements have been included

in an existing TOM-2 model in HP Libra software.
In particular the simulation accuracy for mixers and
switches working in the linear region can be
improved considerably. For power amplifiers the
prediction of the output conductance is important
for the accurate calculation of the power transferred
to the load. Furthermore behaviour of oscillators
can be better predicted, because it is strongly
dependent on the feedback capacitanceCyg.
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Fig. 3: Dispersion resistance Rgis: simulated (solid) and extracted from
measurements (points), E-FET, V 4=0.3, 0.4, 0.5V

Fig. 5: Intermodulation: simulations (solid) and measurements (points),
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Fig. 1: Large Signal equivalent circuit
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Fig. 2: S-parameters: simulated (solid) and measured (dotted),

E-FET, Vds=3V, Vgs=0.4V, 0.4 GHz - 27 GHz
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Fig. 4: Gate drain capacitance Cgd: simulations (solid) and
measurements (points), E-FET, V 4=0.3, 0.4, 0.5V

Input Power [dBm]

E-FET, Vgs=1V, V¢=0.32V

0-7803-4471-5/98/$10.00 (c) 1998 IEEE

10

././././././-/-/-/-1/. |

I f1 = -10 1
. @
1 =)

5 -20 1
| =
3
a

L 5 -30 1
[o8
5

| O 40

f1=5.2 GHz S0 T

$ 21-fa f,=5.21 GHz 4.
; ; ; ; ; ; -60 ‘ ‘ ‘ ‘
-14 -12 -10 -8 -6 -4 -2 -15 -10 10

-5 0
Input Power [dBm]

Fig. 6: Harmonics: simulations (solid) and measurements (points),
E-FET, V=1V, V¢=0.32V



